韓紅霞,孟廣武
(1.運城學院應用數(shù)學系,山西運城 044000;2.聊城大學數(shù)學科學學院,山東聊城 252059)
L-保序算子空間的ω-緊性
韓紅霞1,孟廣武2
(1.運城學院應用數(shù)學系,山西運城 044000;2.聊城大學數(shù)學科學學院,山東聊城 252059)
研究了L-保序算子空間的ω-緊性.借助于Hα-ω-開覆蓋,定義了L-保序算子空間的ω-緊性,證明了ω-緊集和ω-閉集之交是ω-緊的,ω-緊性被連續(xù)的廣義Zadeh型函數(shù)所保持,ω-緊性是L-好的推廣,Tychonoff乘積定理成立.此外,給出了ω-緊性的網(wǎng)式刻畫.
L-保序算子空間;Hα-ω-開覆蓋;ω-緊性
在本文中,L表示F格,1與0分別表示其最大元與最小元.1X與0X分別表示LX的最大元與最小元.對a∈L,β(a)表示a的最大極小集,β?(a)=β(a)∩M(L).對A∈LX,β(A)表示A的最大極小集,β?(A)=β(A)∩M?(LX).記A(a)={x∈X|a∈β(A(x))}.其余未說明的概念和記號見文[1].
[1]陳水利,董長清.L-fuzzy保序算子空間[J].模糊系統(tǒng)與數(shù)學,2002,16(專輯):36-41.
[2]黃朝霞.拓撲生成的Fuzzy保序算子空間的ω-分解定理及ω-連通性理論[J].模糊系統(tǒng)與數(shù)學,2004,18(專輯):180-183.
[3]Liu Yingming,Luo Maokang.Separations in lattice-valued induced spaces[J].Fuzzy Sets and System s,1990, 36:55-66.
[4]王戈平.完全分配格上的弱輔助序與廣義序同態(tài)[J].數(shù)學季刊,1988,3(4):76-83.
[5]He Wei.Generalized Zadeh function[J].Fuzzy Sets and System s,1998,97:381-386.
[6]ShiFugui,Zheng Chongyou.O-convergence of fuzzy netsand itsapp lications[J].Fuzzy Setsand System s,2003, 140:499-507.
ω-com pactness in L-order-preserving operator spaces
HAN Hong-xia1,MENG Guang-wu2
(1.Department of App lied Mathematics,Yuncheng College,Yuncheng,044000,China; 2.School of Mathem atics Science,Liaocheng University,Liaocheng,252059,China)
Theω-com pactness of L-order-preserving operator spaces is discussed.By m eans of Hα-ω-open cover,the notion ofω-com pactness of L-order-preserving operator spaces is introduced.It is p roved that the intersection of aω-com pact L-set and a closed L-set isω-com pact,thatω-com pactness is p reserved by continuously generalized Zadeh functions,thatω-com pactness is an L-good extension,and that the Tychonoff Theorem forω-com pactness is true.Moreover,ω-com pactness can also be characterized by nets.
L-order-preserving operator spaces,Hα-ω-open cover,ω-com pactness
O189
A
1008-5513(2009)02-0390-06
2007-07-10.
山東省自然科學基金(Y 2003A 01).
韓紅霞(1980-),碩士,講師,研究方向:模糊拓撲學.
2000M SC:54A 40